Having a visual image of the problem greatly
assists solution. For quadratics, inequality reduces to finding the
roots and inequality furnishes domain Beware multiplying across an inequality by an
algebraic expression that could be negative
For quadratics, inequality reduces to finding the Just like JCH number line problems
Beware multiplying across an inequal Algebraic Inequalities
questions in coordinate geometry Bonus: NO CROSS TERMS in circle problems
in Paper 2, skills mastered here answer two treacherous ones. If they are absent, all works like
clockwork Linear means no x^{2} or y^{2} or $x y$ terms. $x y$ is a
cross term. The cross termscan be the
treacherous ones. If they are absent, all works like

 isolate a unique solution
Usual exam situation is t second equation relating x and y is needed to
isolate a unique solution not enough information. Infinite solution set. A $x+y=1000$
 equation to solve for $x .5 x-9=3$ is all
information needed to find x
 Simultaneous linear equations Review
Objectives

- Understand what questions are asking!
- Visualise inequalities.
- Do many simultaneous examples as they
should be easy marks
- Get familiar with algebraic fractions
- Use the - b formula yet again!
 to solve but try yourself. Solution Easier to let $x=3 z-13$ and substitute

8 L0Z suo!qenbr্ᅩ snoәиеұ[nuu!S

SIITYS pexinber HОТ	

2008 Simplify fully

$$
\frac{x^{2}+4}{x^{2}-4}-\frac{x}{x+2}
$$ 2009 Find the value of $\frac{x}{y}$ when $\frac{2 x+3 y}{x+6 y}$

Paper 1

Skills: Factorising in general Best
All

$\quad \frac{4}{5}$
2005 Solve $|x-1| \leq 7$

 This is the expression under the square root in the The expression $\Delta=\mathbf{b}^{2}-4 a c$ determine the local maximum or minimum using
the derivative of $f(x)$. This is frequently examined as we can quickly
determine the local maximum or minimum using - $f(x)=a(x-h)^{2}+k$ is called the vertex form where we cut the x axis. quadratic function. These are the values of x $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ is called the factored
form, where x_{1} and x_{2} are the roots of the
 ио!ұวйझ э!̣セлрепØ јо suлоя
uOIS!^əy Yว!̣ŋð
Objectives

- Understand the concepts of roots and factors.
- Revision from JCH
- Factorising Quadratics.
- Proving some useful identities.
- Use conditions on $b^{2}-4 a c$ to classify roots.
What cubics look like
$f(x)=a\left(x-x_{1}\right)\left(x^{2}+r x+s\right)$ This is frequently
examined． of x where we cut the x axis．
We can also express as roots of the cubic function．These are the values factored form，where x_{1}, x_{2} and x_{3} are the
 ио！̣əиин э！̣qпว е јо шлон

> Мə！ฺィəપ
－Proving some useful identities．
－Use the $-b$ formula yet again！ Factorising Cubics．
Proving some useful identities Understand the concepts of roots and factors．

> sII！Ys pə．ı！nbex HOI
© Use $-b$ formula to get two remaining roots long division to get a quadratic －For LCH，one root will always be an integer
（Write down the first factor $x-x_{1}$

 not always 1 ． brackets，and is useful if you＇re trying to draw a
graph．Beware a（in $a x^{3}+b x^{2}+c x+d$ form）is Factorising a cubic means putting it into three

Factorising a Cubic

LCH Problems Paper 1 that $b^{2}-4 a c=0$ ？This is the condition for equal
roots！ We can use the $-b$ formula but also can you show $(x-1)(x-8)(x-8)$

pənu！quoว 8t0を HOT

 Solution $x=1$ is a root，so $(x-1)$ is a factor．Why？Divide $x-1$ into $f(x)$
 $0=(\mathrm{L}) f$ ұечд мочS＇Ғ9 $-x_{08}+x_{\text {LI }}-{ }_{\varepsilon} x=(x) f$
ъ uo！̣sənb 8t0飞 I ләded HDT
$(0$,
$5 x$

2． 2015 Solve $x^{3}-3 x^{2}-9 x+11=0$

$\begin{array}{r}-16 x+64 \\ +80 x-64 \\ +80 x \\ -16 x \\ 64 x-64 \\ -64 x+64 \\ \hline\end{array}$

$x-1)$| $x^{2}-16 x+64$ |
| ---: |
| $x^{3}-17 x^{2}+80 x-64$
 $-x^{3}$
 $+x^{2}$ |
| $-16 x^{2}+80 x$
 $16 x^{2}-16 x$ |
| $64 x-64$
 $-64 x+64$
 0 |

$$
\text { Objectives }
$$

－Develop several algebra tricks to make exam
easier
－Identify method required in context of question
－See that the square of any real complicated
algebraic expression is always positive
－Get better with cubic

$$
\quad \text { Review }
$$

There are only $5-6$ algebra question types that basi－
cally repeat themselves．
Simultaneous Equations
Algebraic Inequalities
Algebraic Fractions
Quadratics
Cubics
We have learned to tackle these questions but some－
times，success in solution depends on a few subtle
little algebra tools．＊＊denote tough problems or
concepts．

әлолд рие К．ıұ оұ рәяиеллеәл әq шъэ s！̣L
$0<6+n 9-{ }_{\tau} p+x 9-x v_{7}+{ }_{\tau} x$
ұечд әло．лd on su！̣кıұ de риә patinous no \langle ¿КЧ

$$
p-9<\frac{p+x}{6}+x
$$

$2007^{* *}$ Show，if $x+a \geq 0, \quad x y$

Tricks for Algebaic Fractions

Simplify $\frac{x-9}{\sqrt{x}+3}$ Solution $\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{\sqrt{x}+3}=\sqrt{x}-3$
Factorize $x-\frac{1}{x}$ Solution $\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$
Factorize $3 x^{2}-75$ Solution $3\left(x^{2}-25\right)=3(x$
$5)(x+5)$
Factorize $x^{2}-16$ Solution $(x-4)(x+4)$
Paper 1 Factorising，for LCH can mean simplifying．Best
with examples．Maybe the most challenging？All

Difference of Two Squares

So solution is 124 ！
But $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=16+10=26$

 $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
$x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Difference of Two Cubes
Tricks for Algebraic Inequalities Observe that $(a-b)^{2}$ is positive for all $a, b \in R$ If we
can get an algebraic expression in this form，we can

Simplify $\frac{x-9}{\sqrt{x}+3}$ Solution $\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{\sqrt{x}+3}=\sqrt{x}-3$

 It uses same mathematics from probability called

 ${ }_{\varepsilon} \hbar+{ }_{\tau} \hbar x_{\varepsilon}+\hbar_{\tau} x_{\varepsilon}+{ }_{\varepsilon} x$

$$
\text { of } k \text { and } n \text {. }
$$

 2005 The first three terms in the binomial expan Find a, b, c and

$$
p+x \supset+{ }_{\tau} x q+{ }_{\varepsilon} x p=\frac{\mathrm{i}(\mathrm{I}+u)_{\mathrm{i}}(\mathrm{I}+u)}{\mathrm{i}(\tau+u)_{\mathrm{i}}(\varepsilon+u)}
$$

where ${ }_{r}=\frac{n}{(n-r)!}$
2018 Paper 2 where $\binom{n}{r}=\frac{n!}{(n-r) \mid r!} \quad\binom{n}{r}^{n-r} y^{r}$ The general term is \qquad combinations．

Exponentials and Logarithms

Dr. Barry Ryan
Kilmartin Educational Services
Objectives
= Underpinning of all of multiplication and
division
= Understand that \log is the inverse of
exponential
= Solve logarithm algebra questions

- Learn tricks vital to whole exam

Review

Exponentials

- Expression of the form a^{p}, a is the base
- We can multiply $a^{p} a^{q}=a^{p+}$
- Take the power $\left(a^{p}\right)^{q}=a^{p q}$
- Two bases, $(a b)^{p}=a^{p} b^{q}$
$-\sqrt{6}=6^{\frac{1}{2}}=2^{\frac{1}{2}} 3^{\frac{1}{2}}=\sqrt{2} \sqrt{3}$
- We use these definitions to define fractions $a^{-1}=\frac{1}{a^{1}}=\frac{1}{a}$.

Logarithms

- Inverse of exponentials
$-\log _{a}(x y)=\log _{a} x+\log _{a} y$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
$-\log _{a} x^{n}=n \log _{a} x$
- $\log _{a} a^{n}=n$
- $\log _{3} 729=6$

Exponentials and Algebra, again

All Paper 1

2008 Solve $2^{x^{2}}=8^{2 x+9}$ Solution $2^{x^{2}}=2^{6 x+27}$. So $x^{2}=6 x+27$ giving as factorization

$$
(x-9)(x+3)
$$

2011 Solve $3^{2 x+1}-17\left(3^{x}\right)-6=0$ Solution Let $y=3^{x}$. Can you show above equation reduces to

$$
3 y^{2}-17 y-6=0
$$

factorization of which is $(3 y+1)(y-6)$ so $3^{x}=-3^{-1}$ or $3^{x}=6$. First root does not exist as an exponential can never be negative. So $x=\frac{\ln 6}{\ln 3}$

Logarithms and Algebra
2016 Given $\log _{a} 2=p$ and $\log _{a} 3=q$ express in terms of p and q

$$
\log _{a} \frac{8}{3}
$$

and

$$
\log _{a} \frac{9 a^{2}}{16}
$$

Solution

$$
\begin{gathered}
\log _{a} \frac{8}{3}=\log _{a} 8-\log _{a} 3=3 p-q \\
\log _{a} \frac{9 a^{2}}{16}=\log _{a} 9 a^{2}-\log _{a} 16
\end{gathered}
$$

which reduces to

$$
2 q+2-4 p
$$

Logarithm inverse of Exponential

If $a^{x}=y$ then $x=\log _{a} y$

Further Indices Problems

1995

Solve $2^{x}+2^{1-x}-3=0$
2003
Solve $2^{2 y+1}-5\left(2^{y}\right)+2=0$
2002
Solve $\frac{8}{2^{x}}=32$
2000
Solve $3 e^{x}-7+2 e^{-x}=0$
Important observation: Comes up in calculus questions often:
Solve for x

$$
\left(x^{2}-1\right) e^{-x^{2}}=0
$$

NOTE that exponential functions never return zero or a negative number. So only solutions are when $\left(x^{2}-1\right)=0$ yielding either $x=1$ or $x=-1$

Further Log Problems

1995

Solve $\log _{2}(x+2)+\log _{2}(x-2)=5$
2000
Solve $2 \log _{9} x=\frac{1}{2}+\log _{9}(5 x+18)$
2004
Solve $\log _{4} x-\log _{4}(x-2)=\frac{1}{2}$
1996**
Solve the simultaneous equations

$$
\begin{gathered}
\log (x+y)=2 \log (x) \\
\log (y)=\log (2)+\log (x-1)
\end{gathered}
$$

This looks difficult but reduces to

$$
x+y=x^{2}
$$

and

$$
y=2(x-1)
$$

for which we solve the quadratic $x^{2}-3 x+2$

2005**

$$
\log _{a} b=\frac{1}{\log _{b} a}
$$

Need to use inverse. Let $\log _{a} b=x$. Then $b=a^{x}$ by definition. So,

$$
a=b^{\frac{1}{x}}
$$

and

$$
\frac{1}{x}=\log _{b} a
$$

Voila!
1999**
Show that

$$
\frac{1}{\log _{2} x}+\frac{1}{\log _{3} x}+\frac{1}{\log _{5} x}=\frac{1}{\log _{30} x}
$$

Using above general result, this reduces to

$$
\log _{x} 2+\log _{x} 3+\log _{x} 5
$$

which equals $\log _{x} 30$ and

$$
\log _{x} 30=\frac{1}{\log _{30} x}!
$$

Easy to Forget!

- a^{x} positive for all $x \in R$

- $\log _{a} x$ only defined for $x>0$
- $\log _{a} a=1$
- $\log _{a} \sqrt{a}=\frac{1}{2}$
- $2 \log _{a}(x)=\log _{a}\left(x^{2}\right)$

KILMARTIN
EDUCATIONAL SERVICES

KILMARTIN

EDUCATIONAL SERVICES

Leaving Certificate

Project Mathematics Higher
Module One: Algebra

Barry Ryan

ENNIS \& LIMERICK

Web: www.kes.ie
Email: info@kes.ie
Contact: 061-444 989

Introduction to Algebra

This document is the first module in a sequence of modules which will cover all sections of the LC Project Mathematics syllabus. We will start with algebra which is the backbone of the course. We will use algebra style questions from Projects Mathematics papers since the new syllabus was introduced. The issue confronting students is there is not enough material reflecting the range of possible questions from the syllabus. Theory will be interspersed with the exam questions as we progress, so we will learn the theory from doing questions rather than the other way round! Another issue tutoring project maths is that any one question can combine techniques from several parts of the course. Some of the examples that follow may only be partial questions as the subsequent part may involve calculus. But mastering algebra will make your calculus really excel.

The structure of this module and the subsequent modules will be Section one, Project Mathematics questions. Section two, pre Project Mathematics questions, all interspersed with theory. There may be appendices pointing out more esoteric ideas. Any theory that is non-examinable will be highlighted by an asterisk.

Project Mathematics

Question 1

(a) Solve the simultaneous equations.

$$
\begin{aligned}
2 x+3 y-z & =-4 \\
3 x+2 y+2 z & =14 \\
x-3 z & =-13
\end{aligned}
$$

(b) Solve the inequality $\frac{2 x-3}{x+2} \geq 3$, where $x \in \mathbb{R}$ and $x \neq-2$.

Question 2

(a) The amount of a substance remaining in a solution reduces exponentially over time. An experiment measures the percentage of the substance remaining in the solution. The percentage is measured at the same time each day. The data collected over the first 4 days are given in the table below. Based on the data in the table, estimate which is the first day on which the percentage of the substance in the solution will be less than 0.01%.

Day	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Percentage of substance (\%)	95	$42 \cdot 75$	$19 \cdot 2375$	8.6569

Quadratics

There are three main polynomials on the course, the line (the exam likes to use l and k to name linear functions):

$$
l(x)=m x+c
$$

where m is the slope and c is where we have the line crossing the y axis. We then have the quadratic:

$$
f(x)=a x^{2}+b x+c
$$

and the cubic:

$$
g(x)=a x^{3}+b x^{2}+c x+d
$$

For quadratics we have two roots which I prefer to call α and β as we discussed in class:

$$
\begin{aligned}
& \alpha=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
& \beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

The expression inside the square root determines the nature of the roots. For two distinct roots which are real numbers:

$$
b^{2}-4 a c>0
$$

For equal, but real roots:

$$
b^{2}-4 a c=0
$$

For complex number roots, which we will cover in a later module:

$$
b^{2}-4 a c<0
$$

We do not need to know the values of the roots but we can show that

$$
\begin{gathered}
\alpha+\beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}+\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right) \\
=\frac{-b}{2 a}+\left(\frac{-b}{2 a}\right) \\
=\frac{-b}{a}
\end{gathered}
$$

Using $x^{2}-y^{2}=(x=y)(x+y)$, we can show (try yourselves), that

$$
\begin{gathered}
\alpha \beta=\left(\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}\right) \\
=\frac{c}{a}
\end{gathered}
$$

These identities are useful to solve pre Project Mathematics questions but have not being taken off the syllabus. Also they are useful for improving algebra skills.

The graphs of three quadratic functions, f, g and h, are shown.

In each case, state the nature of the roots of the function.

Question 3
The function f is such that $f(x)=2 x^{3}+5 x^{2}-4 x-3$, where $x \in \mathbb{R}$.
(a) Show that $x=-3$ is a root of $f(x)$ and find the other two roots.

If you're given a cubic, always assume one root is an. integer
$x=-3$ is a root, so $(x+3)$ is a factor

$$
\frac{2 x^{2}-x-1}{5 x^{2}-4 x-3}
$$

$$
2 x^{3}+6 x^{2}
$$

$$
-x^{2}-4 x
$$

$-x^{2}-3 x$

$$
-x-3
$$

$$
\frac{-x-3}{0 x+0}
$$

note if. evenly must have zeno

$$
\begin{aligned}
& \text { So } 2 x^{2}-x-1 \\
& =(2 x+1)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& x=-3 \\
& x=1 \\
& x=-1 / 2
\end{aligned}
$$

Exponential Functions

Funtions which grow very quickly are called exponentials

$$
f(x)=2^{x}
$$

as the classic example. We can generalise this to

$$
g(x)=a^{x}
$$

where a can be any number. We recall $a=10$ from Junior Certificate. These exponentials lead to logarithms which are just inverses of these. These will be discussed in a later module.

By far the most important exponential is e^{x} where the number e is a bit like π. These numbers are like $\sqrt{2}$ in that they are irrational and cannot be expressed as a fraction, or as a rational number.
e is approximately $2.7182 \ldots$ but never repeats unlike $\frac{1}{3}$.
(Non-examinable

$$
e=\sum_{n=1}^{\infty} \frac{1}{n!}
$$

)
So, if you graph 2^{x} and 3^{x}, e^{x} will lie between them. e^{x} is a function on your calculator. This function appears everywhere on the exam.

Question 4

The graph of the function $g(x)=e^{x}, x \in \mathbb{R}, 0 \leq x \leq 1$, is shown on the diagram below.
(a) On the same diagram, draw the graph of $h(x)=e^{-x}, x \in \mathbb{R}$, in the domain $0 \leq x \leq 1$.

$$
\begin{aligned}
& \text { Recall } \\
& a^{x}=\frac{1}{a^{-x}} \\
& \text { so } e^{-x}=
\end{aligned}
$$

Question 5

Sometimes it is possible to predict the future population in a city using a function.
The population in Sapphire City, over time, can be predicted using the following function:

$$
p(t)=S e^{0 \cdot 1 t} \times 10^{6}
$$

The population in Avalon, over time, can be predicted using the following function:

$$
q(t)=3.9 e^{k t} \times 10^{6}
$$

In the functions above, t is time, in years; $t=0$ is the beginning of 2010; and both S and k are constants.
(a) The population in Sapphire City at the beginning of 2010 is 1100000 people. Find the value of S.

																														\square

(b) Find the predicted population in Sapphire City at the beginning of 2015.

(c) Find the predicted change in the population in Sapphire City during 2015.

(d) The predicted population in Avalon at the beginning of 2011 is 3709795 people.

Write down and solve an equation in k to show that $k=-0 \cdot 05$, correct to 2 decimal places.

(e) Find the year during which the populations in both cities will be equal.

(f) Find the predicted average population in Avalon from the beginning of 2010 to the beginning of 2025.

Question 6
Solve the equation $x^{3}-3 x^{2}-9 x+11=0$.
Write any irrational solution in the form $a+b \sqrt{c}$, where $a, b, c \in \mathbb{Z}$.
If not told, always one root of a cubic wo ll be an integer. Here obvious $x=1$ works. But you may have to try $-1,-2,-3$

$$
\text { or } 1,2,3
$$

So $(x-1)$ is a factor:

$$
\begin{array}{r}
\frac{x^{2}-2 x-11}{\sqrt{x^{3}-3 x^{2}-9 x+11}} \\
\begin{array}{r}
\frac{x^{3}-x^{2}}{-2 x^{2}-9 x} \\
-\frac{2 x^{2}+2 x}{-11 x+15} \\
\frac{-11 x+11}{0 x+0}
\end{array}
\end{array}
$$

You "-b" formula to find roots of

$$
\begin{array}{ll}
2 \pm \frac{x^{2}-2 x-11}{4+44} & a=1 \\
2- & b=-2 \\
& c=-11
\end{array}
$$

Question 7

Let $f(x)=-x^{2}+12 x-27, x \in \mathbb{R}$.
(a) (i) Complete Table 1 below.

Table 1							
x	3	4	5	6	7	8	9
$f(x)$	0	5			8		

(ii) Use Table 1 and the trapezoidal rule to find the approximate area of the region bounded by the graph of f and the x-axis.

Question 8

An oil-spill occurs off-shore in an area of calm water with no currents. The oil is spilling at a rate of $4 \times 10^{6} \mathrm{~cm}^{3}$ per minute. The oil floats on top of the water.
(a) (i) Complete the table below to show the total volume of oil on the water after each of the first 6 minutes of the oil-spill.

Time (minutes)	1	2	3	4	5	6
Volume $\left(10^{6} \mathrm{~cm}^{3}\right)$		8				

(ii) Draw a graph to show the total volume of oil on the water over the first 6 minutes.

(iii) Write an equation for $V(t)$, the volume of oil on the water, in cm^{3}, after t minutes.

(b) The spilled oil forms a circular oil slick 1 millimetre thick.
(i) Write an equation for the volume of oil in the slick, in cm^{3}, when the radius is $r \mathrm{~cm}$.

Question 9

(a) The graph of a cubic function $f(x)$ cuts the x-axis at $x=-3, x=-1$ and $x=2$, and the y-axis at $(0,-6)$, as shown.
Verify that $f(x)$ can be written as

$$
f(x)=x^{3}+2 x^{2}-5 x-6 .
$$

$$
\text { So }(x+3),(x+1) \text { and }
$$

$$
(x-2) \text { or factors. }
$$

$$
\begin{aligned}
f(x)= & (x+3)(x+1)(x-2) \\
= & (x+3)\left(x^{2}-x-2\right) \\
= & \left(x^{3}-x^{2}-2 x\right. \\
& \left.+3 x^{2}-3 x-6\right)
\end{aligned}
$$

$$
=\left(x^{3}-x^{2}-2 x=x^{3}+2 x^{2}-5 x-6\right.
$$

(b) (i) The graph of the function $g(x)=-2 x-6$ intersects the graph of the function $f(x)$ above. Let $f(x)=g(x)$ and solve the resulting equation to find the co-ordinates of the points where the graphs of $f(x)$ and $g(x)$ intersect.
$g(x)$ is a line: why? $\quad n=-2$.
So:

$$
g(x)=f(x) \text { shoaled be points of }
$$ intersection of the line with the cubic:

$$
\begin{aligned}
& -2 x-6=x^{3}+2 x^{2}-5 x-6 \\
& \Rightarrow x^{3}+2 x^{2}-3 x+0=0 . \\
& =x\left(x^{2}+2 x-3\right)=0
\end{aligned}
$$

$$
50 \quad x=0, x=-3, x=+1
$$

(ii) Draw the graph of the function $g(x)=-2 x-6$ on the diagram above.
\square

Question 10
Three natural numbers a, b and c, such that $a^{2}+b^{2}=c^{2}$, are called a Pythagorean triple.
(i) Let $a=2 n+1, b=2 n^{2}+2 n$ and $c=2 n^{2}+2 n+1$.

Pick one natural number n and verify that the corresponding values of a, b and c form a Pythagorean triple.

$$
\begin{array}{r}
\operatorname{Tr} y, n=1 \\
a=3, b=4, c=5
\end{array}
$$

(ii) Prove that $a=2 n+1, b=2 n^{2}+2 n$ and $c=2 n^{2}+2 n+1$, where $n \in \mathbb{N}$, will always form a Pythagorean triple.

$$
\begin{aligned}
& a^{2}= 4 n^{2}+4 n+1 \quad b^{2}=4 n^{4}+8 n^{3}+4 n^{2} \\
& c^{2}=\left(2 n^{2}+2 n+1\right)\left(2 n^{2}+2 n+1\right) \\
&= 4 n^{4}+4 n^{3}+2 n^{2}+4 n^{3}+4 n^{2}+2 n \\
&+2 n^{2}+2 n+1 \\
&= 4 n^{4}+8 n^{3}+8 n^{2}+4 n+1 \\
& \text { But } \quad a^{2}+b^{2}=4 n^{4}+8 n^{3}+8 n^{2}+4 n+1
\end{aligned}
$$

So indeed the case for all $n \in \mathbb{N}$
(b) $A D E C$ is a rectangle with $|A C|=7 \mathrm{~m}$ and $|A D|=2 \mathrm{~m}$, as shown.
B is a point on $[A C]$ such that $|A B|=5 \mathrm{~m}$. P is a point on $[D E]$ such that $|D P|=x \mathrm{~m}$.
(i) Let $f(x)=|P A|^{2}+|P B|^{2}+|P C|^{2}$.

Show that $f(x)=3 x^{2}-24 x+86$, for $0 \leq x \leq 7, x \in \mathbb{R}$.

\qquad

Question 11

Ciarán is preparing food for his baby and must use cooled boiled water. The equation $y=A e^{k t}$ describes how the boiled water cools. In this equation:

- t is the time, in minutes, from when the water boiled,
- y is the difference between the water temperature and room temperature at time t, measured in degrees Celsius,
- A and k are constants.

The temperature of the water when it boils is $100^{\circ} \mathrm{C}$ and the room temperature is a constant $23^{\circ} \mathrm{C}$.
(a) Write down the value of the temperature difference, y, when the water boils, and find the value of A.

(b) After five minutes, the temperature of the water is $88^{\circ} \mathrm{C}$.

Find the value of k, correct to three significant figures.

(c) Ciarán prepares the food for his baby when the water has cooled to $50^{\circ} \mathrm{C}$. How long does it take, correct to the nearest minute, for the water to cool to this temperature?

(d) Using your values for A and k, sketch the curve $f(t)=A e^{k t}$ for $0 \leq t \leq 100, t \in \mathbb{R}$.

			-													-							
-																							
-																							

(e) (i) On the same diagram, sketch a curve $g(t)=A e^{m t}$, showing the water cooling at a faster rate, where A is the value from part (a), and m is a constant. Label each graph clearly.
(ii) Suggest one possible value for m for the sketch you have drawn and give a reason for your choice.

-	-	-		-				-	\square			-				-			\square

Question 12

(a) Find the set of all real values of x for which $2 x \quad 2+x-15 \geq 0$.

-																				
-																				

(b) Solve the simultaneous equations;

$$
\begin{aligned}
x+y+z & =16 \\
\frac{5}{2} x+y+10 z & =40 \\
2 x+\frac{1}{2} y+4 z & =21 .
\end{aligned}
$$

Question 13

Scientists can estimate the age of certain ancient items by measuring the proportion of carbon-14, relative to the total carbon content in the item. The formula used is $Q=e^{-\frac{0.693 t}{5730}}$, where Q is the proportion of carbon-14 remaining and t is the age, in years, of the item.
(a) An item is 2000 years old. Use the formula to find the proportion of carbon-14 in the item.

	1																													

(b) The proportion of carbon-14 in an item found at Lough Boora, County Offaly, was 0.3402. Estimate, correct to two significant figures, the age of the item.

Question 14
(25 marks)
The functions f and g are defined for $x \in \mathbb{R}$ as

$$
\begin{aligned}
& f: x \mapsto 2 x^{2}-3 x+2 \quad \text { and } \\
& g: x \mapsto x^{2}+x+7 .
\end{aligned}
$$

(a) Find the co-ordinates of the two points where the curves $y=f(x)$ and $y=g(x)$ intersect.

This occurs where $f(x)=g(x)$

$$
\begin{gathered}
2 x^{2}-3 x+2=x^{2}+x+7 \\
x^{2}-4 x-5=0 \\
(x-5)(x+1)=0
\end{gathered}
$$

So $x=5$ and $x=-1$.

$$
\begin{array}{r}
y=25+5+7=37 \text { at } x=5 \cdot \\
\text { and } y=1-1+7=7 \text { at } x=-1
\end{array}
$$

Question 15
(25 marks)
A cubic function f is defined for $x \in \mathbb{R}$ as
$f: x \mapsto x^{3}+\left(1-k^{2}\right) x+k, \quad$ where k is a constant.
(a) Show that $-k$ is a root of f.

\quad et $x=-k$, than $f(-k) \cdots M b e$	
	$-k^{3}+\left(1-k^{2}\right)(-k)+k$.
$=$	$-k^{3} \rightarrow k+k^{2}+k=0$

(b) Find, in terms of k, the other two roots of f.

(c) Find the set of values of k for which f has exactly one real root.

This wall be when $k^{2}-4=0$

$$
\begin{aligned}
\left(b^{2}-4 a c=0\right) \cdot & \text { So } K^{2}=4 \\
\text { whew } K & =+2 \\
\text { or } K & =-2
\end{aligned}
$$

Question 16

(a) Solve the simultaneous equations,

$$
\begin{aligned}
& 2 x+8 y-3 z=-1 \\
& 2 x-3 y+2 z=2 \\
& 2 x+y+z=5 .
\end{aligned}
$$

(b) The graphs of the functions $f: x \mapsto|x-3|$ and $g: x \mapsto 2$ are shown in the diagram.
(i) Find the co-ordinates of the points A, B, C and D.

$$
\begin{array}{ll}
A=(1,2) & B=(5,2) \\
C=(3,0) & D=(0,3)
\end{array}
$$

(ii) Hence, or otherwise, solve the inequality $|x-3|<2$.

