JCH Mathematics - Algebra

Algebra

Algebra and Applied Algebra represents 50% of Paper 1. For basic algebra, there are only a few action verbs we need to recognize

- 1. Value substitute in value
- 2. Multiply out and Simplify
- 3. Factorise put in brackets
- 4. Solve
- 5. Chart or Draw

We need to be aware of the following terms

Algebraic Expression - no equal sign Algebraic Equation - an equal sign

There are a number of things we also need

Inequalities
Simultaneous Equations
Indices
Number Systems
Pythagoras' Theorem
Applied Algebra
Functions

We will review all today

Beware: Not all Algebra

Paper 1

50% Algebra

But

Other 50%:

Numbers, Inequalities, Fractions, Ratios, Sets, Venn Diagrams, Speed and Distance, Indices, Patterns, Financial Mathematics, SURDs

barryryankes@gmail.com

Indices

 $2^3\times 2^5\times 2^{10}$

 8^{25} (b)

 $\sqrt{8}$ (c)

(a) Write each of the following numbers in the form 3^k , where $k \in \mathbb{Q}$. 2

(iv) $\frac{1}{\sqrt[3]{3}}$

Write $(-2n)^4$ in the form an^b , where $a, b \in \mathbb{Z}$.

(c) x and $\sqrt{x^2}$ are **not** always equal.

Give an example of a value of x, and the corresponding value of $\sqrt{x^2}$, which are **not** equal.

Factorize Fully - Solved Problems

3 a $9x^2 - 81$

$$9x^{2} - 81 = 9(x^{2} - 9)$$

$$= 9(x^{2} - 3^{2})$$

$$= 9(x - 3)(x + 3)$$

b $3x^2 - 17x + 10$

$$3x^2 - 17x + 10 = (3x - 2)(x - 5)$$

or

$$3x^{2}-17x+10 = 3x^{2}-15x-2x+10$$

$$= 3x(x-5)-2(x-5)$$

$$= (3x-2)(x-5)$$

<u>or</u>

c 4a - 6bc + 3ac - 8b.

$$\begin{array}{rcl}
\bullet & 4a - 6bc + 3ac - 8b & = & 4a + 3ac - 8b - 6bc \\
& = & a(4 + 3c) - 2b(4 + 3c) \\
& = & (a - 2b)(4 + 3c)
\end{array}$$

<u>or</u>

$$\begin{array}{rcl}
\textbf{2} & 4a - 6bc + 3ac - 8b & = & 4a - 8b + 3ac - 6bc \\
& = & 4(a - 2b) + 3c(a - 2b) \\
& = & (4 + 3c)(a - 2b)
\end{array}$$

d Write the following as a single fraction in its simplest form.

$$\frac{x+2}{3} - \frac{x-1}{2}$$

$$= \frac{2(x+2) - 3(x-1)}{6}$$

$$= \frac{2x+4-3x+3}{6}$$

$$= \frac{7-x}{6}$$

Link to Solve

4 Hence, or otherwise, solve the equation

$$\frac{x+2}{3} - \frac{x-1}{2} = 6.$$

$$\frac{x+2}{3} - \frac{x-1}{2} = 6.$$

$$\Rightarrow \frac{7-x}{6} = 6$$

$$\Rightarrow 7-x = 36$$

$$\Rightarrow -x = -29$$

$$\Rightarrow x = 29$$

Exercises - Tough Pre-Project Questions

Solve for x:

$$3(x-1)^2 - 2(x-1) - 1 = 0$$

6

(i)
$$3x^2 + 2x - 8$$

(ii)
$$2x^2y - 2xz - 3xy + 3z$$

(iii)
$$9a^2 - 12ab + 4b^2 - 16c^2$$
.

7

(a) Factorise fully each of the following:

(i)
$$6a^2 + 2ab + 3ac + bc$$

(ii)
$$10x^2 - 3x - 1$$

(iii)
$$5x^2 - 125y^2$$
.

(b) (i) Write the following as a single fraction:

$$\frac{3}{x+2} + \frac{6}{x-4}, \quad x \neq -2, x \neq 4.$$

- (ii) Evaluate your answer when x = 1.
- (c) (i) Solve, correct to one decimal place, the equation

$$5 - 3x - x^2 = 0.$$

7c When
$$ax^2 + bx + c = 0$$
, then
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

-b formula

Bring Together

8 (a) Factorise $n^2 - 11n + 18$.

20 minute question

14% of 2017 Paper 1

(b) Factorise fully wy - y - 1 + w.

(c) Find the value of $\frac{5}{3x-2} - \frac{7}{6x-12}$, when x = 4.

(d) Use factorisation to simplify $\frac{4e^2-9}{2e^2+3e-9}$

(e) A rectangle has sides of length x-3 units and ax^2+bx+c units, where $a,b,c\in\mathbb{Z}$. The **area** of the rectangle is $2x^3-13x^2+25x-12$ square units.

Find the value of a, the value of b, and the value of c.

Write down an inequality in x represented by each of the number lines shown below. Put a tick (\checkmark) in the correct box in each case to show whether $x \in \mathbb{N}, x \in \mathbb{Z}$, or $x \in \mathbb{R}$. The first one is done.

			Nui	mber	line				Inequality in <i>x</i>	(Tick	Domai one bo each ca	x only
-4	-3	-2	-1	0	1	- Q-2	3	4	$-3 \le x < 2$	N	\mathbb{Z}	\mathbb{R}
 - 4	-3	-2	-1	0	1	2	3	4	-35×51	N	Z	\mathbb{R}
-4	-3	 -2	-1	0	1	• 2	\$ 3	4	(< x < 3	N	\mathbb{Z}	\mathbb{R}
 	-3	-2	 -1	0	1	2	3	- \$	-2 < x < 4	N	\mathbb{Z}	\mathbb{R}

10 (a) Solve the following inequality and show the solution on the number line.

$$-2 \le \frac{1}{2}x - 3 < 1, x \in \mathbb{N}.$$

- (b) Josephine hopes to go to college. She has saved €3000. She will attend college for 32 weeks in her first year. She plans to have at least €800 left at the end of the year.
 - (i) If she spends $\mathcal{E}x$ each week, write an inequality to represent her spending during the year.

(ii) Hence, or otherwise, find the maximum amount Josephine can spend each week.

11 Solve the simultaneous equations:

$$3x + 4y = -1$$

$$2x + 9 = -6y.$$

Solve the simultaneous equations

$$2x + 7y = 3$$

$$x + y = \frac{x - 2y + 1}{2}.$$

13 Graph each of the following three functions in the domain $-2 \le x \le 2$, for $x \in \mathbb{R}$.

Function: y = x - 1

Function: $y = 2 - x^2$

Function: $y = 2^x$

(ii)
$$3x^2 - 17x + 10$$

(iii)
$$4a - 6bc + 3ac - 8b$$
.

(b) (i) Write the following as a single fraction in its simplest form.

$$\frac{x+2}{3} - \frac{x-1}{2}$$

(ii) Hence, or otherwise, solve the equation

$$\frac{x+2}{3} - \frac{x-1}{2} = 6.$$

15

(a) Solve the following inequality and graph your solution on the number line.

$$-21 \le 3 - 6x < 12, \ x \in \mathbb{Z}.$$

(b) Factorise fully each of the following expressions.

(i)
$$27x^2 - 45x$$

(ii)
$$6xy - 3sy - 4tx + 2st$$

(c) A 99 Flake ice cream, more commonly known as a 99 or ninety-nine, is an ice cream cone in which a Flake bar is inserted.

Mary buys 2 plain ice cream cones and 3 ninety-nines costing $\in 10\cdot 20$. Joe buys 3 plain ice cream cones and 4 ninety-nines costing $\in 14\cdot 20$. Calculate the cost of a flake.

9

(a) Write down the smallest **prime number**. Give a reason for your answer.

A												
Answer:												
Doggon.												
Reason:												

(b) Explain why 8.7 is a rational number.

(c) Explain what is meant by an integer number.

(d) Write down an irrational number that lies between 3 and 4. Give a reason for your answer.

A														
Answer:														
D														
Reason:														

17 (a) p = 2a + c.

(i) Write a in terms of p and c.

(ii) Hence, find the value of a when p = 5 and $c = \frac{1}{5}$.

(b) Solve the equation $x^2 - 6x + 4 = 0$. Give each answer in surd form.

(c) Write the following as a single fraction in its simplest form.

$$\frac{2x-3}{2} - \frac{4x-7}{5}.$$

- 18 (a) Factorise fully each of the following expressions.
 - (i) 15cd 3de

(ii) om + np - no - pm

(b) (i) Factorise $2x^2 - 5x - 12$.

(ii) Hence, or otherwise, solve the equation $2x^2 - 5x - 12 = 0$.

Transition year students are performing a school play.
Tickets cost €7 for adults and €3 for students and children.

On the opening night, they sold 299 tickets for a total of $\varepsilon1481.$

(a) Write down two equations to represent the above information.

(b) How many adult tickets were sold?

(c) How many student and child tickets were sold?

Description	Value of x
A square number	
A multiple of 7	
A factor of 66	
A cube number	
A prime number	

(b) $\sqrt{27} + \sqrt{75} - \sqrt{12} = k\sqrt{3}$, where $k \in \mathbb{Z}$. Find the value of k.

(c) (i) Simplify $(\sqrt[3]{x})^6$

(ii) Simplify $\frac{3y^2 \times (10y)^3}{2y^5}$

21 A triangle has three sides as follows

$$3x + 2$$
, $2x - 5$, $x + 1$

where $x \in \mathbb{R}$.

(a) Calculate the length of the perimeter of the triangle in terms of x. Give your answer in its simplest form.

(b) Show that the triangle is isosceles when x is equal to 6.

(c) Mark says that *x* equal to 6 is the only value of *x* such that the triangle is isosceles. Is he correct? Justify your answer.

